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The on-demand economy has shaped the habits of consumers, who now expect faster deliveries. Instant deliveries 
gained popularity for carrying meals to urban areas, and the spectrum of products available to order has broadened. 
The platforms that provide these services rely on crowdsourced couriers, who use their personal vehicles, resulting in 
a heterogeneous fleet. Companies experience intense competition to retain both customers and couriers. Hence, it is 
vital to develop superior optimization models integrating multiple types of vehicles, capable of producing assignments 
in real-time to meet customers and couriers’ expectations. An optimization model is developed to solve the assignment 
problem with vehicle restrictions using the Jonker-Vogenant and Branch-and-Cut algorithms. The mathematical model 
is inserted into a dynamic framework that continuously solves it, while controlling the arrivals of orders, couriers’ shifts 
and performing position updates. The model also contemplates dynamic traffic congestion and regional speed limits 
for different types of vehicles. Besides a myopic assignment approach, the implementation of policies is investigated – 
extended assignment policy and bicycle policy – in order to improve performance along different metrics. Based on 
real-world instances, the proposed model with the extended assignment policy achieves a decrease in total delivery 
time of approximately 4.5% and an increase of 9.6% in balanced courier utilization when compared with the real as-
signment, thus improving the solution from the customer and couriers’ perspectives. The bicycle policy achieves an 
increase in balanced courier utilization of 3p.p., at the expense of a 0.3% increase in delivery time compared to the 
baseline model. 
 
Keywords: on-demand, instant delivery, courier assignment, dynamic assignment problem, heterogeneous fleets, 
mixed-integer programming.
 

I. INTRODUCTION 

he demand for fast delivery options has surged in re-
cent years. The technological developments that fol-

lowed the advent of the internet and the mass adoption of 
smartphones had a profound impact on the consumers’ be-
havior and expectations. The same technologies connected 
businesses and customers, frequently cutting the middle-
man and allowing for the coordination of self-employed 
workers. Specially in urban areas, there has been a push for 
faster deliveries whose highest expression is the instant de-
livery (ID) that takes 45 minutes or less (Dablanc et al. 
2017). Recently, the lockdown response to the Covid-19 
pandemic made more people open to try IDs especially for 
meals, resulting, for some countries, in a seven time in-
crease in sales (Ahuja et al. 2021) compared to 2018 levels. 
With the end of restrictions, the growth has slowed down, 
however the habit stuck and now a broader audience regu-
larly uses these services. The exponential growth IDs expe-
rienced in the last decade was sustained largely on the low 
investment required due to crowdsourced workers bringing 
their own vehicles. The other side of this coin is that couri-
ers can choose schedules, reject requests and decide where 
to wait. The fleet is heterogeneous with vehicles with dif-
ferent carrying capacity, speed, range, susceptibility to con-
gestion and restrictions to circulation. 

The literature concerning IDs is scarce and directed to 
the meal delivery niche. Most works do not contemplate 
heterogeneous fleets, or do so incompletely, and do not 
consider the dynamic nature of couriers’ schedules or con-
gestion. However, all these factors influence the real-life 
problem and must be pondered to ensure the best assign-
ment decisions are made. 

Given that the industry has not yet consolidated and 
competition for customers, partners and couriers is intense, 
having assignments that bring value to all parts involved is 
of vital importance to the short to long-term success of 
businesses. It is important to build models that generate re-
sults in real-time for large instances of data, but also to 
study how various policies affect the often-conflicting ob-
jectives. The success in building better models has the po-
tential to reduce costs to both the company and customers 
and ensure that the workforce is retained and motivated. 

The present paper is propelled by a practical case study 
of an ID platform operating in London Metropolitan Area. 
The problem studied concerns the assignment of orders to 
couriers subject to vehicle restrictions, that is affected dy-
namically over the course of a day. Therefore, developing 
an optimization model to answer the aforementioned prob-
lem is the motivation behind this research. 

II. LITERATURE REVIEW 

IDs are remarkably distinct from conventional distribution, 
meaning that traditional delivery problems cannot be ap-
plied. On the other hand, being a new field of study means 
that there is a lack of uniformity, evidenced by the absence 
of a clearly defined general purpose ID problem. For the 
most part, IDs have been studied in the form of meal deliv-
ery problems. These problems capture many real-world as-
pects, but usually let other factors such as order and fleet 
heterogeneity unexplored. 

Chen et al. (2022) studied the problem of IDs where 
couriers depart and return to centralized depots. The formu-
lation incorporates the effects of street networks and traffic 
by multiplying the Euclidean distance by a constant. The 
model also defines a cut-off time after which no changes to 
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the delivery are allowed and has the objective of maximiz-
ing customers served using Deep Q-Networks. 

Li et al. (2022) proposes the use of transfer stations for 
meal delivery to expand the range of restaurants. These sta-
tions are placed based on the time-weighted distance be-
tween customer and restaurant nodes to convert long-range 
tours into multiple smaller trips that are assigned to re-
gional couriers that can pre-position themselves on the 
transfer stations for minimal delay. First, regional orders 
are generated. The long-distance orders are added to build 
new test instances. Then, long-distance orders are grouped 
by a Density Based Spatial Clustering of Applications with 
Noise (DBSCAN) algorithm and the routing is re-opti-
mized for each region, including normal and split paths. 
The objective function minimizes travel time while also pe-
nalizing lateness if the customer time windows are not re-
spected. The author uses an Adaptive Large Neighborhood 
Search (ALNS) heuristic to solve the model. 

Liao et al. (2020) developed a meal delivery model that 
allows for the pooling of orders into a single job. Each cou-
rier has a capacity from one to five boxes that limits the 
order combination. Of the reviewed literature, this article is 
the only that considers multiple objectives – average cus-
tomer satisfaction (minimize delivery time with lateness 
penalties and earliness bonuses), total carbon footprint and 
the scheduling equalization utilization rate of couriers. The 
author uses k-means clustering paired with Principal Com-
ponent Analysis (PCA) to cluster similar orders in the same 
trip. In a subsequent phase, the initial assignment and rout-
ing obtained via a Nondominated Sorting Genetic Algo-
rithm II (NSGA-II) is optimized using ALNS. 

Liu (2019) studies the use of drones, instead of couri-
ers, for meal delivery. Despite the use of autonomous vehi-
cles, the author incorporates heterogeneous fleets since 
drones have different speeds and capacities limited by 
weight. Besides, the author considers two types of meal – 
hot and cold – that cannot be transported together. The 
weight of the load affects not only the speed but also battery 
consumption. Requests arrive dynamically and are as-
signed random preparation times, customer time windows 
and weights. The objective is to minimize travel time in or-
der to evade battery swaps and the model is solved using a 
progressive dispatch algorithm. 

Reyes et al. (2018) published and named the first Meal 
Delivery Routing Problem (MDRP) and implemented a 
strategy that pursues an ideal bundle size. This target can 
be set beforehand or can be adjusted dynamically based on 
the number of couriers and orders. The orders are then 
pooled together aiming at the target. The algorithm allows 
for more orders to be inserted above the maximum thresh-
old of a bundle only if it improves the overall route effi-
ciency. The model minimizes total delivery time while pe-
nalizing lateness and is solved using an exact approach, to 
act as a reference, and a rolling-horizon approach using an 
ALNS heuristic and compares both. 

Steever et al. (2019) address the MDRP and study two 
policies – split, meaning that more than one courier is in-
volved in pickup and delivery, and non-split, where one 
courier must visit all the locations and deliver the consoli-
dated order. The non-split option is modeled as a constraint 

that can be relaxed for the split scenario. The author con-
cluded that a split strategy is effective in ensuring freshness 
but also increases the operational cost when compared to 
the non-split policy. The model dynamically updates travel 
time to simulate traffic and weather conditions and allows 
for courier diversions while the courier drives to a pickup. 
An objective function is used that maximizes earliness 
while penalizing lateness and compares it with two other 
functions – minimizing the time since an order is ready to 
pickup until it is delivered or minimizing the total travel 
time. The model is solved using an auction-based heuristic 
to cope with dynamic orders and the necessity of re-solving 
the problem with every new entry. Whenever a request ar-
rives, a sub-problem for each active courier, considering 
the already attributed orders plus the new one, is solved and 
the objective evaluated. Then, in the myopic approach, the 
courier with the maximum bid is assigned to the customer. 
A proactive variant is also proposed that not only considers 
the bid value, but also future looking metrics of equity – 
distance between the nearest courier and all restaurants – 
and dispersion – scattering of couriers over the grid. The 
results from the heuristic are compared with those of an ex-
act method that does not consider the future looking 
measures. 

Tu et al. (2020) develop a delivery model that incorpo-
rates dynamic orders and courier arrivals, courier exits and 
travel times to simulate traffic. The model includes pre-dis-
patching constraints that prevent couriers from being con-
centrated in the same region, by instead serving requests 
from more distant outlets. The authors calculate cost based 
on travelled distance and attribute a penalty cost for tardi-
ness. This cost is minimized and solved using a hybrid me-
taheuristic based on ALNS, to ensure diversity in the solu-
tions, and it is balanced with tabu search (TS) to intensify 
and improve assignments and routes. 

Ulmer et al. (2021) addressed the variability of orders 
by considering stochastic preparation times. The author ap-
plied a policy to direct couriers to the nearest empty restau-
rant after delivering all assigned orders. The restaurant is 
only viewed as empty if no other idle courier is stationed 
there, ensuring that couriers are distributed across multiple 
restaurants if orders are scarce. The author suggests that 
other relocation policies should be studied in future works. 

Table 1 compares the most relevant features of this 
work with similar papers in literature. Thus, the model de-
veloped and presented in this article makes four primary 
contributions to the literature regarding on-demand deliv-
eries (ODD): 

1)  The inclusion of vehicle restrictions that are im-
posed based on availability of parking space in urban 
areas and on the size of orders. 
2)  Considering fully heterogeneous fleets, with differ-
ent types of vehicles, each with a unique speed, suscep-
tibility to congestion and capacity. 
3)  The inclusion of dynamic order arrivals, courier ar-
rivals and exits, as well as traffic congestion. 
4)  The incorporation of the layout of street networks 
(circuity and speed limits) that differ by region and af-
fect travel time. 
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Table 1. Comparison between this work and literature papers. 

Reference Heterogeneous Fleet Crowdsourced Couriers Traffic Vehicle Restrictions Dynamic Requests 
Percentage of papers % 63% 38% 25% 0% 86% 
Chen et al. (2022) ✓    ✓ 
Li et al. (2022)     ✓ 
Liao et al. (2020) ✓     
Liu (2019) ✓    ✓ 
Reyes et al. (2018)  ✓   ✓ 
Steever et al. (2019) ✓ ✓ ✓  ✓ 
Tu et al. (2020) ✓ ✓ ✓  ✓ 
Ulmer et al. (2021)     ✓ 
This work ✓ ✓ ✓ ✓ ✓ 

 
 

III. METHODOLOGY 

A. Problem Description 
The ID problem consists in finding the optimal assignment 
of orders to couriers, while respecting a set of constraints. 
Uncertainty is associated to both couriers that can log in 
and out of the platform and orders that are instantaneously 
put forward by customers and none of this information is 
known beforehand. Couriers start their day at one location 
and have an associated mode of transport, which for the 
case study is limited to bicycle, car and scooter, and cannot 
be changed. Each type of vehicle has a different speed. Nat-
urally motorized vehicles are quicker, however can be 
slowed down by traffic that varies regionally and dynami-
cally throughout the day. The platform automatically limits 
the type of vehicle that can be assigned to an order based 
on the size of the order, the availability of parking spaces, 
limitations to the circulation, among other factors. Besides, 
each order has a pickup and delivery point that must be vis-
ited by the same courier. Assigned couriers must travel to a 
given location to pick the items to deliver. After delivering 
an order, the courier can either stay at the delivery location 
waiting for a new assignment or proactively move to an 
area with higher demand. 

B. Dynamic Framework 
Modelling IDs requires the incorporation of dynamic ele-
ments, namely the arrival of orders, changes in the fleet of 
couriers and the city traffic throughout the day so as to 
achieve a sincere representation of the real-world. To cap-
ture the dynamic aspects, Pillac et al. (2013) outline various 
strategies, among them periodic re-optimization, which 
serves as the backbone for the presented framework. 

Figure 1 illustrates a simplified flowchart where some 
actions were condensed and represented as processes. The 
first step is to import data containing information about 
couriers, orders and parameters as well as a timeline that 
initially lists the entries and exits of couriers and the arrival 
of orders. Courier data includes a unique identifier for each 
courier, the type of vehicle and the location at which the 
courier starts the shift. Likewise, order data includes an 
identifier, information of the types of vehicles that can 
serve the request and the associated pickup and delivery lo-
cations, as well as the submission time. The parameters in-
clude the speed of each type of vehicle by region, the traffic 
coefficients, the regional circuity factors (ratios of network 

and Euclidean distance that are incorporated to increase the 
precision of distance estimate) and the service times at the 
pickup and delivery locations. Having imported the data, 
additional empty lists are created to hold the couriers avail-
able at the moment, the orders that have been submitted and 
have not yet been picked and the current assignments. Two 
databases are created to store the final records of assign-
ments and failed assignments to aid with the result collec-
tion. Afterwards, the model is initialized by setting the 
starting and end time and step. 

 

 

Figure 1. Dynamic problem workflow. 

Represented as a single process in the flowchart, the 
state update phase condenses a series of tasks that must take 
place before solving the model, including updating the lists 
of active couriers and unserved requests, the position of 
couriers in-transit and the arrival times of couriers. 

For the first step, the timeline is filtered for current 
time, then a series of routines are triggered depending on 
the events that take place during that instant. Arrivals of 
couriers or orders imply that the correspondent identifiers 
are added to the available couriers and unserved orders 
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respectively. Courier exits are applied immediately if the 
courier is idle or, if the courier is occupied with a job, are 
postponed until the order is delivered and only then is the 
courier removed from the list. Since it is assumed that cou-
riers and orders can be reassigned up until the picking, both 
remain in the available lists. This strategy aims at prevent-
ing premature assignments by increasing the window of op-
portunity, allowing for new couriers or orders to arrive and 
provide a better overall outcome, while ensuring that the 
courier is on the way. The strategy has a downside which is 
the increase in the running time of the model, however, 
since the variation is small, it is a trade-off worthy of mak-
ing. When the courier arrives at the picking location, both 
the order and the courier are removed from the available 
lists and the match is made permanent by removing it from 
the assignment database and placing it in the permanent 
record. After the order has been carried out, the courier re-
enters the available courier database. Having completed all 
the updates, the timeline is cleaned of all events reported in 
the temporary assignment table (“pickup start order”, 
“pickup start courier” and “delivery end”) that were not 
made permanent before re-solving the problem, ensuring 
that only the best matches remain in the timeline. 

After updating the lists of available couriers and orders, 
the second step is to update the courier position. Despite the 
assignments only becoming permanent after picking, cou-
riers start to drive towards the location. Since the couriers 
are kept in the available database, if a new order drops 
closer to the courier or a new courier enters the system, this 
results in having to find a new optimum which requires 
knowing the current position of the courier. This is done in 
the second step by calculating the coordinates of an inter-
mediate point in the line between the courier initial location 
and the pickup location that varies linearly as a function of 
time, e.g., if a trip takes 10 minutes, at 5 minutes time, the 
courier will be exactly halfway between the two points. 
With the updated list of couriers, orders and locations, the 
distances between points and the consequent times are 
computed. 

After state updates the AP Mixed-Integer Linear Pro-
gramming (MILP) model can be solved using one of two 
solution methods. Solving the iteration of the model results 
in the creation of a new temporary assignment database. 
For every pair of courier and order, three events are created 
and added to the timeline (“pickup start order”, “pickup 
start courier” and “delivery end”). Following this stage, the 
step is added to current time and the algorithm will have 
another iteration if the end time has not been reached. When 
the end of the running horizon is reached, a table with the 
final assignments for the running horizon is printed, as well 
as a report with Key Performance Indicators (KPIs). 

C. Mathematical Formulation 

Sets 
𝐾 Set of available couriers  
𝑂 Set of unserved orders 
𝑉 Set of vehicle types 
𝑅 Set of regions 
 

Parameters 
𝑙!" Current location of courier 𝑘 
𝑙#$ Pickup location of order 𝑜 
𝑙#% Drop-off location of order 𝑜 
𝜔&!"  1 if courier’s 𝑘 vehicle is of type 𝑣, and 0 otherwise 
𝜔&#'  1 if order 𝑜 can be assigned to a courier with a vehicle 

of type 𝑣, and 0 otherwise 
𝑇#(  Submission time of order 𝑜 
𝑇!#)   Assignment time of order 𝑜 to courier 𝑘 
𝑇!#$  Picking start time of order 𝑜 by courier 𝑘 
𝑇!#%  Delivery end time of order 𝑜 by courier 𝑘 
𝑑!#$  Distance between courier 𝑘 and the pickup location of 

order 𝑜 
𝑑#% Distance between the pickup and drop-off locations of 

order 𝑜 
𝑐* Circuity factor of region 𝑟 
𝑠&* Speed of vehicle of type 𝑣 for region 𝑟 without traffic 
𝜇& Congestion factor of vehicle of type 𝑣 
𝑡!#$  Travel time for courier 𝑘 to get to the pickup point of 

order 𝑜 from its current location 
𝑡!#%  Travel time for courier 𝑘 to get to the drop-off point of 

order 𝑜 from the pickup point of order 𝑜 
𝜏+ Waiting time for the acceptance of an order 
𝜏$ Pickup time 
𝜏% Drop-off time 

Variables 
𝑥!# Binary variable equal to 1 if courier 𝑘 is assigned to 

order 𝑜, and 0 otherwise. 

Objective Function 
Considering the notation, the AP is formulated as a mini-
mization problem. Objective function 3.1, instead of cost, 
minimizes the sum of total delivery times, from moment of 
placement to delivery. 

min 66(𝑇!#% − 𝑇#()
#∈'

∙ 𝑥!#
!∈"

(3.1) 

Constraints 
Constraints 3.2 ensure that all requests are served. Con-
straints 3.3 restrict the maximum number of tasks a courier 
can perform at each time to one. Constraints 3.4 enforce the 
vehicle restrictions, ensuring that only couriers driving ad-
missible vehicles to each order can be assigned to it. Con-
straints 3.5 ensure the domain of the decision variable is 
respected. 

6𝑥!#
!∈"

= 1 𝑜 ∈ 𝑂 (3.2)

6𝑥!#
#∈'

≤ 1 𝑘 ∈ 𝐾 (3.3)

6𝜔&!" 𝜔&#'
&∈-

≥ 𝑥!# 𝑘 ∈ 𝐾, 𝑜 ∈ 𝑂 (3.4)

𝑥!# ∈ {0,1} 𝑘 ∈ 𝐾, 𝑜 ∈ 𝑂 (3.5)
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Auxiliary Computations 
Equation 3.6 gives the distance between two points in a 
sphere, where 𝐸 is Earth’s radius and all latitudes (𝜑) and 
longitudes (𝜆) are in radians. The formula is used to deter-
mine the distance between couriers and pickups 𝑑!#$ =
𝑑(𝑙!" , 𝑙#$) and the distance between each order’s pickup and 
delivery locations 𝑑#% = 𝑑(𝑙#$, 𝑙#%). Every location parame-
ter corresponds to a pair of coordinates 𝑙 = (𝜑, 𝜆). 

𝑑 = 𝐸 ∙ 2 ∙ arcsin	(;sin! <
𝜑! − 𝜑"

2
? + cos(𝜑")cos	(𝜑!) sin! C

𝜆! − 𝜆"
2

E) (3.6) 

Equation 3.6 returns the shortest distance between two 
points, which in urban environments is seldom the case due 
to infrastructure or natural features constraining the direc-
tion of movement. This is handled by multiplying a re-
gional circuity factor to the distance. Durations are given 
by equation 3.7 by dividing the real distance, that is equal 
to the linear distance multiplied by a circuity factor 𝑐*, by 
the speed of the courier with a vehicle of type 𝑣 in region 
𝑟, while incorporating the slowing effect of traffic for the 
current time on motorized vehicles. 

𝑡!# =
𝑑!# ∙ 𝑐*
𝑠&,*

(1 + 𝜇&) (3.7) 

Equations 3.8 and 3.9 compute the time at which the 
courier starts the pickup and the time at which the order is 
delivered to the customer, respectively. 

𝑇!#$ = 𝑇!#) + 𝑡!#$ (3.8) 

𝑇!#% = 𝑇!#$ + 𝜏$ + 𝑡!#% + 𝜏% (3.9) 

 
D. Solution Approach 
The dynamic framework continuously calls an algorithm to 
solve the updated assignment problems. Two exact meth-
ods are tested, the Jonker-Volgenant (JV) algorithm 
(Jonker and Volgenant 1987) that solves the assignment 
problem and requires the previous incorporation of the ve-
hicle restrictions into the cost matrix, and a Branch-and-Cut 
(BC) algorithm (Dijkstra 1959) included in a mathematical 
optimization solver – Gurobi, that solves the mathematical 
model with vehicle restrictions. 

IV. EXPERIMENTS AND RESULTS 

A. Baseline Analysis 
The simplest way of matching couriers and orders is to do 
so as soon as new orders arrive and not changing the as-
signment even if in a later instant a different match is better. 
This myopic approach is labeled as baseline to distinguish 
it from the alternative policies and is useful to serve as a 
benchmark. The assignment algorithm (JV or BC) is in-
voked every minute of a day, starting at 5am (minute 0) and 
ending at 12am (minute 1140), and solved to minimize the 
total delivery time at every instant. These results are com-
pared with the assignments made by the delivery platform 
in real life. The list with the courier-order pairs does not 
necessarily correspond to the optimal assignment obtained 
by the company’s Hungarian Algorithm (HA) (Kuhn 1955) 
because couriers can reject a job and the final assignment 

might not be the ideal one. However, for the purpose of 
comparing the developed approach with the real results, the 
assignments presented by the company in this list are used. 
For each courier and order pair, delivery time is computed 
using the same parameters of speed, service time, conges-
tion and circuity factors used in the developed approach. 
Each courier has an initial location when entering the sys-
tem and it is assumed that the first order of that courier 
starts from that point. If a courier is assigned to more than 
one order, the starting location is not its initial point, but 
rather the delivery location of the previous order. 

Table 2 resumes relevant KPIs for the two algorithms 
and for the real assignment. In terms of the total objective, 
there is a difference, albeit small, between the JV and BC 
algorithms. This might seem paradoxical since both ap-
proaches are exact, however, the discrepancy is due to the 
way both algorithms assign orders to a heterogeneous fleet 
in a tie. The JV algorithm starts assigning from right to left 
side of the cost matrix. By contrast, the BC algorithm se-
lects the first optimal solution found, which might not co-
incide with the exact pair selected by the JV approach. This 
does not present any difference at the instant it happens but 
may start a chain reaction that has consequences in later in-
stants, resulting in a difference of around 0.5% or 14 sec-
onds per order. 
Table 2. Baseline policy and real assignment KPI comparison. 

KPI [unit] JV BC Real 
Total Delivery Time [min] 47 599 47 844 48 002 
Requests Served [%]    
   Bicycle 31% 32% 20% 
   Car 31% 31% 24% 
   Scooter 38% 37% 55% 
Average Delivery Time [min]    
   Bicycle 38 38 35 
   Car 43 44 47 
   Scooter 50 51 48 
Average Courier Utilization 
[jobs/courier] 

   

   Bicycle 7.5 7.7 4.9 
   Car 4.9 4.9 4.2 
   Scooter 4.8 4.7 6.9 
Variation Courier Utilization 
[jobs/courier] 

3.3 3.4 3.5 

 
The total delivery time for the real assignment and the 

model with the two algorithms is close. Since the model 
solves all 1 062 requests, the average delivery time is 44 
min 49 s for the JV approach (best) and 45 min 12 s for the 
real assignment (worst) which represents just an improve-
ment of less than 1%. This difference is negligible and can 
be attributed in part due to these not being the optimal as-
signments, but instead the accepted ones, and due to the fact 
that the real matches of couriers and orders did not incor-
porate congestion and the regional variability of roads. 
Both algorithms assign, approximately, one third of the re-
quests to couriers with each type of vehicle. By contrast, 
the real assignment produced by the company attributes 
more than half of the matches to scooters, a fourth to cars 
and a fifth to bicycles. The results of the mathematical 
model, with either approach, might seem more even but, 
when juxtaposed to the average fleet composition (22% bi-
cycles, 35% cars, 43% scooters), it becomes clear that both 
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approaches result in proportionally more bicycles being 
matched at the expense of cars and especially scooters, 
which is likely the result of considering the same conges-
tion factors and regional speeds for motorized vehicles. The 
real model, on the other hand, favors scooters at the ex-
pense mostly of cars. 

A challenge that ODD platforms with crowdsourced 
workers face concerns the difficulty in hiring and retaining 
couriers, in part due to the existence of competing firms. If 
the workload of a courier is low, the courier might leave the 
platform or use it in parallel with other platforms. On the 
other hand, if the workload is too high, the courier can be 
overworked and start to reject orders. For these reasons and 
from a long-term perspective, it is preferable to have a bal-
anced use of the courier fleet, which is measured by the 
courier utilization indicators. The average number of jobs 
assigned to bicycle couriers is greater for the model, while 
the scooter utilization is higher for the real assignment. The 
standard deviation in courier utilization is also greater for 
the real assignment, meaning that the discrepancies be-
tween couriers are greater. The model solved with the JV 
approach constitutes an improvement of 4.5% in this met-
ric, and with the BC of 1.5% in balanced courier utilization. 

The delivery time can be analyzed not only in total or 
grouped by vehicle type, but also by period of the day and 
region. Figure 2 shows the average delivery time from a 
periodic perspective. The morning period goes from 5am to 
9am, the day period from 9am to 2pm, evening from 2pm 
to 7pm and night from 7pm to midnight. The morning pe-
riod represents the lowest delivery time because, during 
this period, congestion is lower and the ratio of couriers to 
orders is high. Traffic also explains the values for evening 
and night periods, but fails at justifying the spike, for both 
real and proposed assignments, during the day period. In-
stead, this increase is attributed to the ratio of couriers and 
orders. The period from 9am to 10am is the only time when 
more orders arrive than couriers are available in the system, 
furthermore, an overwhelming majority of orders have ve-
hicle restrictions during this period. Of these, 49 orders 
must be served by scooters between 9am and 10pm when 
there are only 35 couriers with scooters in the system, 
which helps explain the higher delivery time for this period. 

The real assignment enables pooling, which means that 
orders can be combined to be delivered by the same courier. 
This means that when there is a lack of couriers with scoot-
ers, instead of waiting for more to arrive or finish the deliv-
eries, the real model can attribute many orders to a single 
courier, which helps to explain the lower delivery time for 
the day period. 

 
Figure 2. Delivery time by period, in minutes. 

Regionally, there are disparities in the average delivery 
time, which can range from 35 minutes to more than 80 
minutes. For most regions, delivery time tends to be closer 
to the average and the more atypical values are registered 
in regions where there are fewer requests. Figure 3 repre-
sents the map of London, where the colors represent, for 
each region, the ratio between delivery time of the approach 
solved by the JV algorithm and the real assignment. If the 
ratio is higher, it means that the real assignment results in a 
shorter delivery time and is represented in red. A lower ra-
tio means that the JV algorithm has the shortest delivery 
time and the correspondent borough is represented in blue. 
Light grey boroughs have no orders associated, while bor-
oughs in white have an identical delivery time. 

 
Figure 3. Ratio of delivery time between the JV approach 

and real assignment. 

In the inner part of the city, the JV algorithm approach 
results in faster assignments, which is the region where 
most requests originate from. In the outer part of the city, 
results are mixed and, in the west, the real assignment pro-
duces faster deliveries. The cause for these results is likely 
due to the excess of orders for scooters that take surge in 
peripheric regions, the starting location of couriers with dif-
ferent vehicles and variability that is more noticeable in re-
gions with less orders. 

B. Policy Analysis 
Besides the baseline assignment approach, the implemen-
tation of two policies is investigated – extended assignment 
policy (1) and bicycle policy (2). 

1) Assignment until Pickup Policy 
The baseline policy considers that immediately after an as-
signment, the assigned order is permanently removed from 
the list of orders waiting for assignment and the assigned 
courier becomes unavailable until finishing this job. This 
means that, if minutes later a new courier arrives that could 
improve the overall objective, such option is never contem-
plated. To prevent this issue, the Assignment until Pickup 
(AuP) policy is incorporated that allows couriers and orders 
to remain available for assignment up until the courier 
reaches the pickup point. This implies that if in the future a 
courier logs in or finishes a delivery task and is faster to 
reach the pickup point, the assignment can be changed. The 
policy also requires the current location of the pre-assigned 
courier to be updated until the assignment is made perma-
nent or nullified. Figure 4 shows a timeline with all the 
steps of a delivery in the model. When an order is assigned, 
there is a waiting time accounting for the time couriers take 
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Figure 4. Delivery timeline with assignment windows for different policies.

to accept the job (𝜏+) and, afterwards, the courier starts to 
travel towards the pickup location, reaching it 𝑡$minutes 
after the confirmation. 

The framework with the AuP policy is run using the JV 
and BC algorithms, considering as input the same instance 
used for the baseline. Table 3 compares the baseline and 
AuP policies in terms of total objective and other KPIs. The 
new policy increased the running time of the model in six 
and eight times for the JV and BC approaches, respectively, 
however the model can be used in real-world applications 
for large instances. This is due to the excess of state updates 
that this policy adds and the fact that each assignment be-
comes larger with more couriers and orders.  

Table 3. Baseline and AuP policy KPI comparison. 

KPI [unit] Baseline  AuP 
JV BC  JV BC 

Total Delivery Time [min] 47599 47844  45882 45912 
Requests Served [%]      
   Bicycle 31% 32%  32% 31% 
   Car 31% 31%  30% 31% 
   Scooter 38% 37%  39% 38% 
Delivery Time [min]      
   Bicycle 38 38  37 37 
   Car 43 44  43 43 
   Scooter 50 51  48 48 
Courier Utilization 
[jobs/courier]      

   Bicycle 7.5 7.7  7.6 7.6 
   Car 4.9 4.9  4.7 4.8 
   Scooter 4.8 4.7  4.9 4.8 
Variation Courier 
Utilization [jobs/courier] 3.3 3.4  3.1 3.1 

Time on Permanent 
Assignments [min]      

   Bicycle 290 295  285 283 
   Car 215 219  201 204 
   Scooter 246 240  231 230 
Time on Non-permanent 
Assignments [min]      

   Bicycle - -  3 3 
   Car - -  4 4 
   Scooter - -  6 6 

 
In terms of the total objective, there is a reduction of 

1717 minutes for the JV algorithm and 2032 minutes for 
the BC algorithm when compared to the baseline or, on av-
erage, a reduction of 1 minute and 37 seconds and 1 minute 
and 49 seconds, respectively. The policy results in the ob-
jectives for the two approaches becoming more similar 
since, with more couriers and orders in an assignment de-
cision, the probability of a tie is smaller. 

The policy has little to no effect on the percentage of 
orders attributed to each type of vehicle, yet still affects 
courier utilization. When compared with the baseline, the 
AuP policy results in changes in the couriers with no orders 

and in the couriers with more orders, thus affecting the dis-
parities between couriers. While the baseline policy results 
in three and two couriers not being assigned to any order 
for the JV and BC algorithms respectively, for the AuP both 
algorithms result in only one courier with no assignments. 
Moreover, the maximum number of orders a scooter cou-
rier performs is also reduced. The average courier utiliza-
tion remains practically the same, with modest increases for 
scooters and decreases for cars. The standard deviation in 
courier utilization is reduced to 3.1 jobs per courier, which 
means that, despite not being the aim of the policy, the dis-
tribution of work by the couriers is more balanced. 

In terms of delivery time by vehicle type and when 
compared with the baseline, the AuP policy registers an 
overall reduction and greater similarity between the JV and 
BC algorithms. The same can be said for the delivery time 
for each period and by region. The boroughs of Barnet and 
Hackney register, on average, longer delivery times with 
the new policy, although only worse by approximately one 
minute. The rest of the regions either reduce the delivery 
time or maintain it. The boroughs of Hillingdon and Rich-
mond upon Thames register the biggest improvements, of 
approximately 20%. The drastic improvement might be 
linked to these regions having less couriers that are moved 
in the early periods to areas with more requests, which 
would have left the region without the means to respond 
promptly to new orders. With long assignment windows, if 
a request arrives in an area without couriers, a distant cou-
rier is mobilized and starts driving in that direction. How-
ever, if a courier starts or finishes delivering an order and 
is closer to the pickup, a new match is established and the 
courier that was coming to aid can remain in the same re-
gion and serve local requests. 

The AuP policy also raises concerns about the time 
couriers spend on assignments that fail to materialize. Cou-
riers spend less time delivering using this policy, which is 
part due to trips becoming more optimized and delivered 
faster, but also due to the increase in balanced courier utili-
zation. The time spent on non-permanent assignments is on 
average small (4 minutes and 42 seconds) when compared 
to the daily delivery activities (234 minutes), equivalent to 
less than 2% of active time. The time spent delivering by 
each courier is on average greater on the baseline than the 
sum of the time spent on permanent and non-permanent as-
signments combined for the AuP policy. This means that 
the policy apart from being positive in terms of the cus-
tomer-oriented objective (delivery time), might also pro-
vide benefits for couriers (balanced utilization).  

For the entire running period, there is a total of 156 un-
realized assignments. Assuming that each one is equivalent 
to an order, which might not be the case since one order can 
be re-assigned many times, this implies that 15% of orders 
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or less are re-assigned at some point. Scooters are the most 
common transport among temporary assignments, making 
up 48%, followed up by cars with 33% and bicycles with 
19%. Congestion makes bicycles a more appealing vehicle 
for delivery, which explains why they are unassigned less, 
while scooters make up the bulk of the fleet, making them 
more likely to get unassigned. Figure 5 represents the num-
ber of failed assignments by period and differentiated by 
type of vehicle for the JV algorithm. The morning registers 
only seven failed assignments due to the ratio of couriers to 
orders being high. During the day, this number increases 
drastically, peaking in the evening and then decreasing at 
night. The proportion of vehicles assigned to orders is con-
sistent to the fleet composition, with more cars in the morn-
ing and bicycles in the evening. 

 
Figure 5. Number of non-permanent assignments per vehicle 

type, by period, for the JV algorithm. 

The assignment time comprises the period between an 
order being submitted and the time at which the order is 
assigned permanently to a courier. For the baseline model, 
this period is zero if there are enough couriers that respect 
the vehicle restrictions, or longer otherwise. In practice, 
due to the shortage of couriers during some periods, the av-
erage assignment time is 35 seconds for the JV and 37 sec-
onds for the BC algorithms, respectively. For the AuP pol-
icy, this value averages 3 minutes and 3 seconds for both 
algorithms. This means that, by taking on average two and 
half minutes longer on the assignment, the policy is able to 
reduce the total delivery time, which already includes the 
assignment time, by 1 minute and 37 seconds for the JV 
algorithm and by 1 minute and 49 seconds for the BC algo-
rithm, i.e., equivalent to a 3.6% and 4.2% reduction, respec-
tively. Figure 6 represents the average assignment time by 
period for the JV and BC algorithms. There is a clear peak 
in the morning period for scooters, that coincides with the 
appearance of scooter-restricted orders in the region of 
Brent. Cars are the transport that takes the longest to assign 
during the day, evening and night periods, which might be 
partially influenced by congestion. However, since scooters 
take less time to be matched, other factors such as the initial 
location of both transports might account for the difference. 

 
Figure 6. Average assignment time by period per vehicle type 

for the JV algorithm, in minutes. 

Regionally, the values for average assignment time of 
orders are not correlated with the sheer number of non-per-
manent assignments, meaning that some regions can have 
many re-assignments that result in orders having a small 
assignment time or vice-versa, e.g., if an order is re-as-
signed three times in three minutes, the total assignment 
time is just three minutes. By contrast, an order can be re-
assigned just one time after five minutes of the first assign-
ment and this would result in an assignment time of 5 
minutes. The region of Brent is one of a few cases where 
there are many re-assignments that take on average 20 
minutes. 

It can be concluded that the policy improves the main 
objective of reducing delivery time, alleviates the problem 
of the high number of orders with a restriction in the region 
of Brent and improves the distribution of work by couriers. 

2) Bicycle Policy 
For environmental concerns or in anticipation of future leg-
islation limiting the circulation of motorized vehicles, it is 
interesting to study how can more bicycles be employed 
and what are the effects in the total objective and other 
KPIs. The policy consists in giving priority to couriers with 
bicycles for orders whose total distance, from courier to 
pickup location plus pickup to delivery location, is less than 
a fixed value. This is done by reducing the objective value 
for couriers with bicycles for nearby orders before solving 
the model. The policy is applied over the baseline approach 
using the same parameters, but also applied over a set of 
modified parameters that reduce the congestion of scooters 
and reduce bicycle speed. 

Table 4 shows the values of the KPIs for the baseline 
and bicycle policy, applied only to orders whose travelled 
distance is lower than or equal to three kilometers, using 
the two algorithms. The two policies barely differ in terms 
of running time, however, the objective values increase 
around 0.3%, which is expected since the policy introduces 
an inefficiency by not assigning the order to the best match 
and instead favoring bicycle couriers. 
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Table 4. Baseline and bicycle policy KPI comparison. 

KPI [unit] Baseline  Bicycle 
(dmax=3) 

JV BC  JV BC 
Total Delivery Time 
[min] 47599 47844  48146 48077 

Requests Served [%]      
   Bicycle 31% 32%  34% 32% 
   Car 31% 31%  30% 31% 
   Scooter 38% 37%  36% 37% 
Delivery Time [min]      
   Bicycle 38 38  38 38 
   Car 43 44  44 44 
   Scooter 50 51  52 52 
Courier Utilization [jobs]      
   Bicycle 7.5 7.7  6.9 7.8 
   Car 4.9 4.9  4.6 4.9 
   Scooter 4.8 4.7  5.3 4.6 
Variation Courier 
Utilization [jobs] 3.3 3.4  3.4 3.3 

Contrary to the baseline results, where the JV algo-
rithm performed better, for the bicycle policy it is the BC 
algorithm that is faster. Due to the difference being less 
than one percent, it is not possible to discern if it is caused 
by the policy or by small variations in the assignments. 

Since the policy is only applied to couriers and orders 
whose total travel distance does not exceed a fixed value, it 
is important to study how this parameter influences the 
KPIs. Figure 7 plots the average objective value and the 
share of requests served by each vehicle type. The graph 
shows that for a distance above 4.5 kilometers there is a 
steep increase in delivery time, which is due to a higher 
number of orders above that distance on one side, and to 
the fact that misallocating couriers for small distances does 
not change delivery time much, while misallocating couri-
ers that are further away means that these couriers have to 
travel longer distances, which lengthens the deliveries. For 
this reason, the policy should be set only for small dis-
tances, which means that the increments in bicycle utiliza-
tion are also lower. The policy might still be worthy of con-
sidering for small distances because it does not signifi-
cantly influence the delivery time and occupies bicycle 
couriers with closer orders, leaving the distant orders for 
motorized vehicles that are not as worn-out by long trips. 

 
Figure 7. Average delivery time and assignment composition for 
variations in the maximum distance to apply the bicycle policy. 

Speed and congestion parameters heavily influence the 
model. Furthermore, scooters are less affected by conges-
tion and bicycles are unlikely to be totally immune. Addi-
tional experiments are conducted using the same instances 
applied to previous policies with changes in speed and con-
gestion parameters. The speed of bicycles is reduced to not 
surpass the speed without congestion of motorized vehi-
cles. Scooter and bicycle congestion parameters are re-
duced to 60% and 40%, respectively, to that of cars. 

The results are analogous to the previous analysis, with 
an increase in the maximum distance to apply the policy, 
leading to slower deliveries. At the same time, the propor-
tion of orders performed by bicycles and its utilization in-
creases at the expense of other modes of transportation. 
What differs relatively to the previous analysis is the mag-
nitude of the changes. Figure 8 shows the average delivery 
time and the proportion of orders delivered by each vehicle. 
Compared to Figure 7, the increase in the utilization of bi-
cycles is proportionally higher. The difference in the num-
ber of orders served by bicycles rises 12p.p. between the 
scenario without this policy (distance zero) and the scenario 
where the policy is applied for a maximum distance of up 
to nine kilometers. This happens because, with the modi-
fied input, motorized transports become proportionally 
more competitive than bicycles. Using the original input, 
the model heavily favored bicycles, which meant that the 
policy gave preference to an already favored mode of trans-
portation. The figure also evidences the fact that, applied to 
distances greater than 4.5 kilometers, the policy leads to an 
increase in delivery time that can be detrimental. 

 
Figure 8. Average delivery time and assignment composition for 
variations in distance to apply the policy for the modified data. 

The results of the policy are mixed. On the one hand, a 
forced increase in bicycle courier utilization naturally leads 
to higher delivery times, which impairs the performance of 
the company at the eyes of the consumer. On the other 
hand, the increased courier satisfaction or a decrease in di-
rect emissions might still be worth to pursue. An interme-
diary policy, where bicycles are given preference for dis-
tances of three kilometers or less, can be beneficial by not 
only increasing the usage of bicycles, but also by ensuring 
that couriers with bicycles deliver closer orders and are not 
tired due to excessive pedaling. 
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V. CONCLUSIONS AND FUTURE RESEARCH 

IDs are characterized by intense competition not only in 
gaining customers, but also in hiring and retaining couriers. 
Hence, the development of an optimization model that, in 
real-time, assigns couriers to orders for large sets of data is 
essential to ensure that both customer and courier objec-
tives are satisfied. These results can be further improved by 
the implementation of assignment policies. 

A myopic baseline approach is used, which constitutes 
an improvement in the total delivery time objective of 0.8% 
using the JV algorithm and 0.3% using the BC algorithm 
when compared with the real assignment, and an increase 
of 4.5% and 1.4%, respectively, in balanced courier utiliza-
tion. These results are further improved by applying a pol-
icy that enables re-assignments until the courier arrives at 
the pickup point. This policy achieves a reduction in total 
delivery time of 4.4% and accomplishes an increase in bal-
anced utilization of 9.6% for the two algorithms when com-
pared to the real assignment, while still being fast enough 
to be used in real applications. On the other hand, this pol-
icy has the inconvenient of sometimes making couriers start 
to work on an order only for the job to be assigned to an-
other courier; however, on average, this rarely happens 
since, in the model, couriers take 2 minutes to accept an 
order and the average assignment time with the policy is 
only 2 minutes and 25 seconds, making the trade-off worth 
considering. Additionally, a policy that prioritizes bicycle 
utilization for short distances is also studied. Applied only 
to orders that require travelling for 3 minutes or less, the 
total delivery time increases by 0.3% and 0.2% for the JV 
and BC algorithms, respectively, while the courier utiliza-
tion rises by 14p.p. compared to the real assignment. Even 
with this inefficiency, the policy might still be worth apply-
ing if a company has the objective of reducing direct carbon 
emissions. As evidenced by the sensitivity analyses, the 
model is heavily influenced by pickup time and the relative 
differences in speed and congestion between vehicle types. 

It is suggested that more attention should be devoted to 
the research of multiple objectives (from the perspectives 
of customers, couriers and partner restaurants or stores), the 
inclusion of stochastic courier rejections, order priority, 
heterogeneous requests (by differentiating size, type of 
product and source as either a restaurant or store with dif-
ferent processing/pickup times), different dynamic ap-
proaches and the addition of drones as a new vehicle type 
to work along regular couriers. The study of additional pol-
icies might provide valuable insights for the application by 
delivery platforms. Reposition policies that incentivize 
couriers to move to areas with higher demand of orders or 
lower supply of couriers might provide great benefits. This 
can also be adopted to move couriers with motorized vehi-
cles to less congested areas. Additionally, a policy that 
evaluates the number of vehicles of each type in a fleet and 
manages the assignment based on preventing future short-
ages of vehicles might also yield positive results. 
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